The right contextual information determining the success of communication on translation
Keywords:
communication, comprehension, information, receptor language, translationAbstract
As relevance theory shows, the success of communication crucially depends on the right contextual information being highly accessible at the right time. Thus it is not sufficient that this information is physically available somewhere in the receptor language; to become effective for comprehension it must be highly accessible mentally to the reader or hearer at the time when it is needed. Thus while it is true in a general way that the translation of Old Testament portions is important because they provide background information necessary for understanding the New Testament, for it to be profitable for the comprehension of a particular New Testament passage, readers must be able to access in their minds just those pieces of information from the Old Testament that are relevant to this specific passage.
References
Barua, S., Ahmed, M. U., Ahlström, C., & Begum, S. (2019). Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert systems with applications, 115, 121-135. https://doi.org/10.1016/j.eswa.2018.07.054
Bublatzky, F., Kavcıoğlu, F., Guerra, P., Doll, S., & Junghöfer, M. (2020). Contextual information resolves uncertainty about ambiguous facial emotions: Behavioral and magnetoencephalographic correlates. NeuroImage, 215, 116814. https://doi.org/10.1016/j.neuroimage.2020.116814
Callejas, Z., & Lopez-Cozar, R. (2008). Influence of contextual information in emotion annotation for spoken dialogue systems. Speech Communication, 50(5), 416-433. https://doi.org/10.1016/j.specom.2008.01.001
Chun, M. M. (2000). Contextual cueing of visual attention. Trends in cognitive sciences, 4(5), 170-178. https://doi.org/10.1016/S1364-6613(00)01476-5
Dror, I. E., Charlton, D., & Péron, A. E. (2006). Contextual information renders experts vulnerable to making erroneous identifications. Forensic science international, 156(1), 74-78. https://doi.org/10.1016/j.forsciint.2005.10.017
Jiang, K., Yin, H., Wang, P., & Yu, N. (2013). Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing, 119, 17-25. https://doi.org/10.1016/j.neucom.2012.02.049
Ko, Y., & Seo, J. (2008). An effective sentence-extraction technique using contextual information and statistical approaches for text summarization. Pattern Recognition Letters, 29(9), 1366-1371. https://doi.org/10.1016/j.patrec.2008.02.008
Luvizon, D. C., Tabia, H., & Picard, D. (2019). Human pose regression by combining indirect part detection and contextual information. Computers & Graphics, 85, 15-22. https://doi.org/10.1016/j.cag.2019.09.002
Mahata, N., Kahali, S., Adhikari, S. K., & Sing, J. K. (2018). Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Applied Soft Computing, 68, 586-596. https://doi.org/10.1016/j.asoc.2018.04.031
Mayes, A. R., Meudell, P. R., & Pickering, A. (1985). Is organic amnesia caused by a selective deficit in remembering contextual information?. Cortex, 21(2), 167-202. https://doi.org/10.1016/S0010-9452(85)80026-5
Melgani, F., & Serpico, S. B. (2002). A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recognition Letters, 23(9), 1053-1061. https://doi.org/10.1016/S0167-8655(02)00052-1
Osborne, N. K., & Taylor, M. C. (2018). Contextual information management: an example of independent-checking in the review of laboratory-based bloodstain pattern analysis. Science & Justice, 58(3), 226-231. https://doi.org/10.1016/j.scijus.2018.01.001
Osborne, N. K., Woods, S., Kieser, J., & Zajac, R. (2014). Does contextual information bias bitemark comparisons?. Science & Justice, 54(4), 267-273. https://doi.org/10.1016/j.scijus.2013.12.005
Ramesh, B., Xiang, C., & Lee, T. H. (2015). Shape classification using invariant features and contextual information in the bag-of-words model. Pattern Recognition, 48(3), 894-906. https://doi.org/10.1016/j.patcog.2014.09.019
Sharot, T., & Yonelinas, A. P. (2008). Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition, 106(1), 538-547. https://doi.org/10.1016/j.cognition.2007.03.002
Simons, J. S., Owen, A. M., Fletcher, P. C., & Burgess, P. W. (2005). Anterior prefrontal cortex and the recollection of contextual information. Neuropsychologia, 43(12), 1774-1783. https://doi.org/10.1016/j.neuropsychologia.2005.02.004
Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote sensing of environment, 71(3), 282-296. https://doi.org/10.1016/S0034-4257(99)00083-8
Tao, C., Qi, J., Li, Y., Wang, H., & Li, H. (2019). Spatial information inference net: Road extraction using road-specific contextual information. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 155-166. https://doi.org/10.1016/j.isprsjprs.2019.10.001
Volpi, M., Tuia, D., Bovolo, F., Kanevski, M., & Bruzzone, L. (2013). Supervised change detection in VHR images using contextual information and support vector machines. International Journal of Applied Earth Observation and Geoinformation, 20, 77-85. https://doi.org/10.1016/j.jag.2011.10.013
Xia, X., Togneri, R., Sohel, F., & Huang, D. (2018). Random forest classification based acoustic event detection utilizing contextual-information and bottleneck features. Pattern Recognition, 81, 1-13. https://doi.org/10.1016/j.patcog.2018.03.025
Published
How to Cite
Issue
Section
Copyright (c) 2021 Zera Zu
This work is licensed under a Creative Commons Attribution 4.0 International License.