The right contextual information determining the success of communication on translation



communication, comprehension, information, receptor language, translation


As relevance theory shows, the success of communication crucially depends on the right contextual information being highly accessible at the right time. Thus it is not sufficient that this information is physically available somewhere in the receptor language; to become effective for comprehension it must be highly accessible mentally to the reader or hearer at the time when it is needed. Thus while it is true in a general way that the translation of Old Testament portions is important because they provide background information necessary for understanding the New Testament, for it to be profitable for the comprehension of a particular New Testament passage, readers must be able to access in their minds just those pieces of information from the Old Testament that are relevant to this specific passage. 


Barua, S., Ahmed, M. U., Ahlström, C., & Begum, S. (2019). Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert systems with applications, 115, 121-135.

Bublatzky, F., Kavcıoğlu, F., Guerra, P., Doll, S., & Junghöfer, M. (2020). Contextual information resolves uncertainty about ambiguous facial emotions: Behavioral and magnetoencephalographic correlates. NeuroImage, 215, 116814.

Callejas, Z., & Lopez-Cozar, R. (2008). Influence of contextual information in emotion annotation for spoken dialogue systems. Speech Communication, 50(5), 416-433.

Chun, M. M. (2000). Contextual cueing of visual attention. Trends in cognitive sciences, 4(5), 170-178.

Dror, I. E., Charlton, D., & Péron, A. E. (2006). Contextual information renders experts vulnerable to making erroneous identifications. Forensic science international, 156(1), 74-78.

Jiang, K., Yin, H., Wang, P., & Yu, N. (2013). Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing, 119, 17-25.

Ko, Y., & Seo, J. (2008). An effective sentence-extraction technique using contextual information and statistical approaches for text summarization. Pattern Recognition Letters, 29(9), 1366-1371.

Luvizon, D. C., Tabia, H., & Picard, D. (2019). Human pose regression by combining indirect part detection and contextual information. Computers & Graphics, 85, 15-22.

Mahata, N., Kahali, S., Adhikari, S. K., & Sing, J. K. (2018). Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Applied Soft Computing, 68, 586-596.

Mayes, A. R., Meudell, P. R., & Pickering, A. (1985). Is organic amnesia caused by a selective deficit in remembering contextual information?. Cortex, 21(2), 167-202.

Melgani, F., & Serpico, S. B. (2002). A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recognition Letters, 23(9), 1053-1061.

Osborne, N. K., & Taylor, M. C. (2018). Contextual information management: an example of independent-checking in the review of laboratory-based bloodstain pattern analysis. Science & Justice, 58(3), 226-231.

Osborne, N. K., Woods, S., Kieser, J., & Zajac, R. (2014). Does contextual information bias bitemark comparisons?. Science & Justice, 54(4), 267-273.

Ramesh, B., Xiang, C., & Lee, T. H. (2015). Shape classification using invariant features and contextual information in the bag-of-words model. Pattern Recognition, 48(3), 894-906.

Sharot, T., & Yonelinas, A. P. (2008). Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition, 106(1), 538-547.

Simons, J. S., Owen, A. M., Fletcher, P. C., & Burgess, P. W. (2005). Anterior prefrontal cortex and the recollection of contextual information. Neuropsychologia, 43(12), 1774-1783.

Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote sensing of environment, 71(3), 282-296.

Tao, C., Qi, J., Li, Y., Wang, H., & Li, H. (2019). Spatial information inference net: Road extraction using road-specific contextual information. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 155-166.

Volpi, M., Tuia, D., Bovolo, F., Kanevski, M., & Bruzzone, L. (2013). Supervised change detection in VHR images using contextual information and support vector machines. International Journal of Applied Earth Observation and Geoinformation, 20, 77-85.

Xia, X., Togneri, R., Sohel, F., & Huang, D. (2018). Random forest classification based acoustic event detection utilizing contextual-information and bottleneck features. Pattern Recognition, 81, 1-13.



How to Cite

Zu, Z. (2021). The right contextual information determining the success of communication on translation. Applied Translation, 15(1), 39–43. Retrieved from



Regular Issue Articles